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BURGERS AND KADOMTSEV–PETVIASHVILI HIERARCHIES: A

FUNCTIONAL REPRESENTATION APPROACH

A. Dimakis∗ and F. Müller-Hoissen†

Functional representations of (matrix) Burgers and potential Kadomtsev–Petviashvili (pKP) hierarchies

(and others), as well as some corresponding Bäcklund transformations, can be obtained surprisingly simply

from a “discrete” functional zero-curvature equation. We use these representations to show that any

solution of a Burgers hierarchy is also a solution of the pKP hierarchy. Moreover, the pKP hierarchy can

be expressed in the form of an inhomogeneous Burgers hierarchy. In particular, this leads to an extension

of the Cole–Hopf transformation to the pKP hierarchy. Furthermore, these hierarchies are solved by the

solutions of certain functional Riccati equations.

Keywords: Burgers hierarchy, Cole–Hopf transformation, Kadomtsev–Petviashvili hierarchy, functional

Riccati equation

1. Introduction

It was noted in [1] that any solution of the first two equations of the Burgers hierarchy [2]–[10] is

also a solution of the potential Kadomtsev–Petviashvili (pKP) equation. The generalization to the case

where the dependent variables take their values in a matrix (or, more generally, an associative and typically

noncommutative) algebra A appeared in [11]. It can be easily shown using functional representations

(i.e., generating equations depending on auxiliary indeterminates) of the corresponding hierarchies that

any solution of the (“noncommutative”) Burgers hierarchy indeed also solves the (“noncommutative”) pKP

hierarchy (see Sec. 4). Moreover, it turns out that the pKP hierarchy can be expressed as an inhomogeneous

Burgers hierarchy. This means that there is a functional form of the pKP hierarchy involving a matrix

function as an inhomogeneous term. If this term is set to zero, then the functional form of the pKP

hierarchy reduces to a functional form of the Burgers hierarchy.

Our starting point for generating functional representations of integrable hierarchies is a functional

zero-curvature (Zakharov–Shabat) equation, which we recall in Sec. 2 (also see [12], [13]). In Sec. 3, we

then treat the simplest nontrivial example: a Burgers hierarchy with the dependent variable in A. We

consider another version of the Burgers hierarchy in the appendix. In Sec. 4, we address the case of the

pKP hierarchy and its relations to Burgers hierarchies. In particular, we obtain an extension of the Cole–

Hopf transformation from the Burgers to the pKP hierarchy, generalizing a result in [11]. In Sec. 5, we

show that there is a functional Riccati equation that implies the pKP hierarchy and that reduces under

certain conditions to a certain functional Riccati equation that implies the Burgers hierarchy. Because such

Riccati equations can be solved explicitly, this offers a quick way to obtain exact solutions. If a “rank-one

condition” is imposed (see [14] and the references therein), then these solutions of matrix hierarchies lead

to solutions of the corresponding scalar hierarchies.
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2. The functional zero-curvature condition

The integrability conditions of a linear system

∂tn
ψ = Bnψ, n = 1, 2, . . . , (2.1)

with the independent variables t := (t1, t2, t3, . . . ) are the Zakharov–Shabat (zero-curvature) conditions

∂tn
Bm − ∂tm

Bn = [Bn, Bm]. (2.2)

We learned [12], [13] that for several important hierarchies, instead of the partial derivatives ∂tn
, it is more

convenient to use the operators

χ̂n := pn(−∂̃), ∂̃ :=

(
∂t1 ,

∂t2

2
,
∂t3

3
, . . .

)
, (2.3)

where pn are the elementary Schur polynomials; this insight can be traced back to [15] (also see [16]). In

particular, we have

χ̂0 = id, χ̂1 = −∂t1 , χ̂2 = −
1

2
∂t2 +

1

2
∂2

t1
,

χ̂3 = −
1

3
∂t3 +

1

2
∂t2∂t1 −

1

6
∂3

t1
,

χ̂4 = −
1

4
∂t4 +

1

3
∂t3∂t1 +

1

8
∂2

t2
−

1

4
∂t2∂

2
t1

+
1

24
∂4

t1
.

An equivalent form of the above linear system is then

ψ−[λ] = E(λ)ψ, (2.4)

where λ is an indeterminate and E(λ) =
∑

n≥0 λ
nEn is a formal power series in λ. The coefficients En

can be expressed in terms of the Bn, and vice versa. For example, B1 = −E1, B2 = −2E2 − E1,t1 + E2
1 ,

and B3 = −3E3 − 3E2,t1 − E1,t1t1 + 2E1,t1E1 + E1E1,t1 + 3E2E1 − E3
1 . In (2.4), we use the notation [λ] :=

(λ, λ2/2, λ3/3, . . . ) and

f−[λ](t) := f
(
t− [λ]

)
=

∞∑

n=0

λnχ̂n(f) (2.5)

(as a formal power series in λ) for any object f dependent on t. This is sometimes called a Miwa shift. We

also use “positive” Miwa shifts, f[λ](t) := f
(
t + [λ]

)
=
∑∞

n=0 λ
nχn(f) with χn := pn(∂̃). The integrability

conditions are now

E(λ)−[µ]E(µ) = E(µ)−[λ]E(λ), (2.6)

where λ and µ are indeterminates. If E(λ) is regarded as a parallel transport operator, then (2.6) can be

interpreted as a “discrete” zero-curvature condition, as depicted in the (commutative) diagram

•
E(λ)

−−−−→ •

E(µ)

y
yE(µ)

−[λ]

• −−−−−→
E(λ)

−[µ]

•

.
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Here, “discrete” is used in the sense of [16] (also see [17], [18] for an approach to integrable equations via

discrete zero-curvature equations).

Introducing a “discrete” gauge potential (see [19], [20]) by

E(λ) = I − λA(λ), (2.7)

where I is the unit element of the (typically matrix) algebra from which the coefficients of the formal power

series A(λ) are taken,1 we can write (2.6) as

Υ(λ, µ) = Υ(µ, λ), Υ(λ, µ) := µ−1
(
A(λ) −A(λ)−[µ]

)
+ A(λ)−[µ]A(µ). (2.8)

Equation (2.6) has the gauge invariance2

E(λ) 7→ B−[λ]E(λ)B−1 = E
′(λ) (2.9)

with an invertible B. This originates from the transformation ψ′ = Bψ of linear system (2.4). In particular,

Bäcklund (or Darboux) transformations thus arise (see, e.g., [21]). In terms of the gauge potential, (2.9) is

λ−1
(
B − B−[λ]

)
= A

′(λ)B − B−[λ]A(λ). (2.10)

In Sec. 3, a Burgers hierarchy results from the simplest nontrivial ansatz for E(λ) (also see the appendix

for another version of the matrix Burgers hierarchy). If the gauge potential is linear in the operator of partial

differentiation with respect to the variable x, we obtain the pKP hierarchy (see Sec. 4). There are more

examples (also see [12], [13]) and a generalization of (2.6) that covers multicomponent hierarchies.

3. The Burgers hierarchy and Cole–Hopf and Bäcklund

transformations in functional form

We choose

E(λ) = I − λφ, (3.1)

and the gauge potential A(λ) = φ is hence independent of λ. We can then express (2.6) as

ω(λ) = ω(µ), ω(λ) := λ−1
(
φ− φ−[λ]

)
+ φ−[λ]φ. (3.2)

Because limλ→0 ω(λ) = φx + φ2, where x := t1, this turns out to be equivalent to

Ω(λ) := ω(λ) − φx − φ2
≡
(
φ− φ−[λ]

)
(λ−1

− φ) − φx = 0, (3.3)

which is a functional representation of a (“noncommutative”) Burgers hierarchy. The first hierarchy equa-

tion is the Burgers equation φy = φxx +2φxφ, where y := t2. From (3.1), we obtain B1 = φ, B2 = φt1 +φ2,

B3 = φt1t1 +2φt1φ+φφt1 +φ3, and so on. Zakharov–Shabat equations (2.2) then also produce the Burgers

hierarchy equations.

Because the curvature vanishes, we can expect that there is a gauge in which the gauge potential A

vanishes. Hence, we seek an invertible f such that

f−1
−[λ]E(λ)f = I (3.4)

(i.e., E ′(λ) = I and B = f−1 in (2.9)), which is

λ−1
(
f − f−[λ]

)
= φf. (3.5)

1More generally, the coefficients of the formal power series E(λ) and A(λ) can be elements of any unital associative algebra
A whose elements are differentiable with respect to the set of coordinates t (which requires a Banach space structure on A).
Then ψ is an element of a left A-module.

2Transformation (2.9) extends the above planar diagram to a “commutative cube,” where B acts along the orthogonal
bonds.
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Proposition 1. Equation (3.5) is a functional representation of the Cole–Hopf transformation

φ = fxf
−1, (3.6)

∂tn
f = ∂n

x f, n = 2, 3, . . . . (3.7)

Any invertible f that solves linear “heat hierarchy” (3.7) determines a solution of the Burgers hierarchy

via (3.6).3

This noncommutative version of the Cole–Hopf transformation (see, e.g., [3], [7], [11], [22]–[26]) for the

Burgers equation appeared, for instance, in [3], [26]–[28].

Proof. A well-known identity for the elementary Schur polynomials pn leads to

nχ̂n = −

n∑

k=1

∂tk
χ̂n−k = −

n−2∑

k=1

∂tk
χ̂n−k − ∂tn

+ ∂x∂tn−1 , n = 2, 3, . . . .

Using this, we prove by induction that for an arbitrary integer N > 1, the first N equations of the system

in (3.7) are equivalent to the first N equations χ̂n(f) = 0, n = 2, 3, . . . . Together with (3.6), these equations

are equivalent to (3.5). Furthermore, the integrability condition for (3.5) is Burgers hierarchy equation (3.2).

Remark 1. Special solutions of heat hierarchy (3.7) are given by arbitrary linear combinations of the

Schur polynomials pn(t), n = 0, 1, 2, . . . , with constant coefficients in A. In particular, with constant P ∈ A,

eξ(P ) =
∑

n≥0

pn(t)Pn, ξ(P ) :=
∑

m≥1

tmP
m (3.8)

is a (formal) solution.

Transformation equation (2.10) is now

λ−1
(
B − B−[λ]

)
= φ′B − B−[λ]φ. (3.9)

In the limit as λ→ 0, this implies

φ′ = BφB−1 + BxB
−1. (3.10)

Using this equation to eliminate φ′ from (3.9) yields

(
B − B−[λ]

)
(λ−1

− φ) = Bx. (3.11)

Together with (3.10), this is equivalent to (3.9). Any invertible B that satisfies (3.11) generates a new

solution φ′ from a given solution φ of the Burgers hierarchy via (3.10). Because (3.11) is linear in B, linear

combinations of solutions (with constant left coefficients) are again solutions of (3.11). Comparing (3.11)

with (3.3) shows that B = φ is a particular solution. Obviously, any constant element α also satisfies (3.11).

Hence, B = α+ βφ with arbitrary constants α and β satisfies these conditions, and (3.10) becomes

φ′ = (α+ βφ)φ(α + βφ)−1 + βφx(α+ βφ)−1 (3.12)

assuming that the inverse exists. This covers the elementary Bäcklund (or Darboux) transformations

obtained in [3], [9], [24], [29], [30].

3Conversely, if φ solves the Burgers hierarchy, then we choose f such that fx = φf . Then

0 = Ω(λ)f =
`

∂x − φ−[λ]

´ˆ

λ−1
`

f − f−[λ]

´

− fx

˜

implies that f solves the heat hierarchy if ∂x − φ−[λ] is invertible.
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4. The potential KP hierarchy in functional form and relations to

the Burgers hierarchy

If we choose4

E(λ) = I − λ
(
w(λ) + ∂

)
, (4.1)

i.e., A(λ) = w(λ) + ∂, where ∂ = ∂x, then (2.8) leads to the equations

λ−1
(
w(µ) − w(µ)−[λ]

)
+ w(µ)−[λ]w(λ) + w(λ)x =

= µ−1
(
w(λ) − w(λ)−[µ]

)
+ w(λ)−[µ]w(µ) + w(µ)x (4.2)

and

w(λ) − w(λ)−[µ] = w(µ) − w(µ)−[λ]. (4.3)

Equation (4.3) is solved by

w(λ) = φ− φ−[λ], (4.4)

and Eq. (4.2) then becomes

ω(λ)−[µ] − ω(µ)−[λ] = ω(λ) − ω(µ) − (φx + φ2)−[λ] + (φx + φ2)−[µ] (4.5)

with the definition in (3.2) taken into account. Summing this expression three times with cyclically permuted

indeterminates λ1, λ2, and λ3 results in the Bogdanov–Konopelchenko (BK) functional equation [31], [32],

3∑

i,j,k=1

ǫijkω(λi)−[λj ] = 0, (4.6)

where ǫijk is totally antisymmetric with ǫ123 = 1. This determines the pKP hierarchy and is equivalent

to (4.5). Expanding (4.5) in λ and µ yields ∂xφ = ∂t1φ and

χ̂mχ̂n+1(φ) − χ̂nχ̂m+1(φ) = χ̂m

(
χ̂n(φ)φ

)
− χ̂n

(
χ̂m(φ)φ

)
, m, n = 1, 2, . . . . (4.7)

An equivalent expression for the pKP hierarchy (in the scalar case) already appeared in [33] (also see [10],

[12]). For m = 1 and n = 2, this yields the pKP equation

(4φt − φxxx − 6φx
2)x − 3φyy + 6[φx, φy] = 0, (4.8)

where x = t1, y = t2, and t = t3. Comparing (3.2) with (4.5) shows that any solution of the Burgers

hierarchy considered in Sec. 3 also solves the pKP hierarchy.

Remark 2. There is a (Sato–Wilson) pseudodifferential operator W = I +
∑

n>0 wn∂
−n such that

B = W−1 in (2.9) transforms E(λ) into E ′(λ) = I−λ∂. It is determined (up to multiplication by a constant

operator I +
∑

n>0 cn∂
−n) by

w1 − w1,−[λ] = φ−[λ] − φ, wn+1 − wn+1,−[λ] = λ−1
(
wn − wn,−[λ]

)
− wn,x −

(
φ− φ−[λ]

)
wn.

4Starting instead with E(λ) = I − λv(λ)∂ leads in the same way to the modified KP hierarchy [12]. The two choices of
E(λ) are related by a gauge transformation (Miura transformation).
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4.1. The pKP hierarchy as an inhomogeneous Burgers hierarchy. We observe that (4.5) can

also be written as

Ω(µ) − Ω(µ)−[λ] = Ω(λ) − Ω(λ)−[µ], (4.9)

where Ω(λ) is the expression defined in (3.3) in terms of φ. As a consequence, the pKP hierarchy becomes

Ω(λ) = θ − θ−[λ] (4.10)

with some θ. If the right-hand side vanishes, i.e., if θ is constant, then this is precisely functional represen-

tation (3.3) of the Burgers hierarchy considered in Sec. 3. Representation (4.10) is equivalent to

χ̂n+1(φ) − χ̂n(φ)φ = χ̂n(θ), n = 1, 2, . . . . (4.11)

The first two equations are

φy = φxx + 2φxφ+ 2θx,

φt = φxxx + 3φxxφ+ 3φx
2 + 3φxφ

2 + 3θxφ+
3

2
(θy + θxx)

(4.12)

after we use the first equation to replace φy in the second. For constant θ, these are the first two equations

of the Burgers hierarchy. Eliminating θ from (4.12), we recover pKP equation (4.8).

Applying a Miwa shift to (4.5) leads to

ω̃(λ)[µ] − ω̃(µ)[λ] = ω̃(λ) − ω̃(µ) − (φx + φ2)[λ] + (φx + φ2)[µ], (4.13)

where

ω̃(λ) := ω(λ)[λ] = λ−1
(
φ[λ] − φ

)
+ φφ[λ].

Because this can be written as

Ω̃(λ)[µ] − Ω̃(λ) = Ω̃(µ)[λ] − Ω̃(µ) (4.14)

with

Ω̃(λ) := ω̃(λ) − φx − φ2 = (λ−1 + φ)
(
φ[λ] − φ

)
− φx,

the pKP hierarchy can also be expressed as

Ω̃(λ) = θ̃[λ] − θ̃ (4.15)

with some θ̃. The functions θ̃ and θ are related by θ̃ − θ = φx + φ2. If θ̃ is constant (and the right-hand

side hence vanishes), then the last equation reduces to the “opposite” Burgers hierarchy (see the appendix)

(λ−1 + φ)
(
φ[λ] − φ

)
= φx, (4.16)

which starts with φy = −φxx − 2φφx. In particular, we have the following result.

Proposition 2. Any solution of either of the two Burgers hierarchies also solves the pKP hierarchy.
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4.2. A Cole–Hopf transformation for the matrix pKP hierarchy.

Theorem. Let (A, · ) be the algebra of M×N matrices of functions of t with the product

A ·B = AQB, (4.17)

where the ordinary matrix product is used in the right-hand side and Q is a constant N×M matrix. Let

X be an invertible N×N matrix and Y ∈ A be such that X and Y solve linear heat hierarchy (3.7) and

satisfy

Xx = RX +QY (4.18)

with a constant N×N matrix R. Then the pKP hierarchy in (A, · ) is solved by

φ := Y X−1. (4.19)

Proof. Using (4.19), we can write the expression Ω(λ) defined in (3.3) (where a factor Q enters the

nonlinear term because of (4.17)) as

Ω(λ) =
(
φ− φ−[λ]

)
(Xx −QY )X−1 +

(
λ−1

(
Y − Y−[λ]

)
− Yx

)
X−1

−

− φ−[λ]

(
λ−1

(
X −X−[λ]

)
−Xx

)
X−1.

If X and Y solve the heat hierarchy, then χ̂n(X) = 0 = χ̂n(Y ), n = 2, 3, . . . , and hence

λ−1
(
X −X−[λ]

)
= Xx, λ−1

(
Y − Y−[λ]

)
= Yx.

Using these equations, we reduce the above expression for Ω(λ) to

Ω(λ) =
(
φ− φ−[λ]

)
(Xx −QY )X−1.

If R := (Xx −QY )X−1 is constant, which means that (4.18) holds, then this takes form (4.10) of the pKP

hierarchy with θ = φR.5 Therefore, φ solves the pKP hierarchy.

If R = 0, then (4.18) and (4.19) with M = N and Q = IN reduce to φ = XxX
−1, and we recover the

Cole–Hopf transformation for the Burgers hierarchy. We note that the conditions imposed on X already

imply Q
(
λ−1

(
Y − Y−[λ]

)
− Yx

)
= 0 and Y therefore automatically satisfies the heat hierarchy if Q has the

maximum rank. Furthermore, if we consider Qφ instead of φ, then the assumption on Y is unnecessary.

Corollary. Let X solve the heat hierarchy and (4.18) with some Y . Then Qφ with φ given by (4.19)

solves the (N×N)-matrix pKP hierarchy with the usual matrix product.

A similar result appeared already in [11] for the case where rankQ = 1 (see [14] and the references

therein). Then tr(QA · B) = tr(QA) tr(QB); hence, by (4.18), the function

ϕ := tr(Qφ) = − trR+ (log τ)x, τ := detX, (4.20)

solves the scalar pKP hierarchy.

5We also note that θ̃ = θ + φx + φQφ = YxX
−1 by (4.18).
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4.3. Bäcklund and Darboux transformations. Substituting the ansatz B = b(t) − ∂ in (2.10)

leads to the two equations

b− φ′ + φ = (b− φ′ + φ)−[λ] (4.21)

and

λ−1
(
b− b−[λ]

)
− bx =

(
φ′ − φ′−[λ]

)
b− b−[λ]

(
φ− φ−[λ]

)
+
(
φ− φ−[λ]

)
x
. (4.22)

The solution of (4.21) is

b = φ′ − φ (4.23)

(an additive constant is absorbed into φ′). Equation (4.22) can then be written as

Ω(λ) − Ω′(λ) = Γ(φ, φ′) − Γ(φ, φ′)−[λ], (4.24)

where Ω′(λ) is built with φ′ and Γ(φ, φ′) := (φ′ −φ)φ−φx. This is an elementary Bäcklund transformation

(BT) of the pKP hierarchy. Extending the above ansatz for B to the nth order in ∂ leads to equations

determining nth-order BTs. These are solved by an n-fold product of elementary BTs.

Using (4.10), we find

0 = Γ(φ, φ′) + θ′ − θ = φ′φ+ θ′ − θ̃. (4.25)

Let Bn,m denote the BT taking a pKP solution φm to a new solution φn. The permutability relation6

B(3,1)B(1,0) = B(3,2)B(2,0) then results in

(φ2 − φ1)x = φ3(φ2 − φ1) + (φ2 − φ1)φ0 + φ2
1 − φ2

2. (4.26)

In the commutative scalar case, setting φ = τx/τ with a function τ yields τ0τ3 = τ1τ2,x − τ1,xτ2. Rela-

tion (4.26) algebraically determines a new solution φ3 in terms of a given solution φ0 and the corresponding

Bäcklund descendants φ1 and φ2.

In the case under consideration, linear system (2.4) becomes

λ−1
(
ψ − ψ−[λ]

)
− ψx =

(
φ− φ−[λ]

)
ψ (4.27)

(see [15] for an equivalent version in the scalar case). If ψ is invertible, then we obtain

φ− φ−[λ] = λ−1
(
ψ − ψ−[λ]

)
ψ−1

− ψxψ
−1. (4.28)

Using (4.23) to eliminate φ′ from (4.22) and then using (4.28) to eliminate φ− φ−[λ] results in

(b − ψxψ
−1)x + (b− ψxψ

−1)
(
b+ λ−1ψ−[λ]ψ

−1
)
−

−
(
b−[λ] + λ−1ψ−[λ]ψ

−1
)
(b− ψxψ

−1) = 0. (4.29)

This equation is obviously solved by

b = ψxψ
−1. (4.30)

Hence, if ψ1 solves the linear system with a solution φ of the pKP hierarchy, then

φ′ = φ+ ψ1,xψ
−1
1 (4.31)

is a new solution of the pKP hierarchy.7 This is a Darboux transformation [30], [34]–[36].

6We note that this is also a discrete zero-curvature condition.
7Moreover, ψ′ = Bψ = ψx − ψ1,xψ

−1
1 ψ satisfies the linear system with φ′.
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5. Functional Riccati equations associated with KP and Burgers

hierarchies: Toward exact solutions

We consider BK functional equation (4.6) in the algebra (A, · ), where A is the set of M×N matrices

of complex functions of t, supplied with product (4.17). The simplest nontrivial equation, which results

from this formula by expanding in powers of the indeterminates, is the matrix pKP equation

(4φt − φxxx − 6φxQφx)x = 3φyy − 6(φxQφy − φyQφx). (5.1)

As a consequence, φQ satisfies the (M×M)-matrix pKP hierarchy, and Qφ satisfies the (N×N)-matrix pKP

hierarchy. Moreover, if Q = V UT with an N×m matrix V and an M×m matrix U , then UTφV satisfies

the (m×m)-matrix pKP hierarchy. In particular, for m = 1, this becomes the scalar pKP hierarchy, and Q

has the rank one.

The crucial observation now is that the BK functional equation and hence the pKP hierarchy are

satisfied if φ solves

ω(λ) = S + Lφ− φ−[λ]R (5.2)

with constant matrices S, L, and R with the respective dimensions M ×N , M ×M , and N ×N . This is

a functional matrix Riccati equation for φ,

λ−1
(
φ− φ−[λ]

)
= S + Lφ− φ−[λ]R− φ−[λ]Qφ. (5.3)

The integrability condition for this functional equation is satisfied8 because

(
φ−[λ]

)
−[µ]

=
[
(λ−1

− L)φ−[µ] − S
][

(λ−1
−R) −Qφ−[µ]

]−1
=

=
[
(λ−1

− L)(µ−1
− L)φ− (λ−1

− µ−1)S + LS + SR+ SQφ
]
×

×
[
(λ−1

−R)(µ−1
−R) − (λ−1 + µ−1)Qφ+ (RQ+QL)φ+QS

]−1
(5.4)

is symmetric in λ and µ and therefore equals
(
φ−[µ]

)
−[λ]

. The Riccati equation implies

Ω(λ) =
(
φ− φ−[λ]

)
R, Ω̃(λ) = L

(
φ[λ] − φ

)
. (5.5)

This shows that with R = 0 or L = 0, any solution of (5.3) also solves the respective Burgers hierarchy (3.3)

or opposite Burgers hierarchy (4.16) in (A, · ).

It is well known that matrix Riccati equations can be linearized [37], [38]. This is achieved by regarding

φ(t) as an element of the Grassmannian G(N,N + M) of N -dimensional linear subspaces of CN+M via

κ(φ) = span(IN , φ
T)T because κ−1 : G(N,N +M) → CM×N defines a chart for the manifold G(N,N +M).

In fact, (5.3) can be lifted to a linear equation on the space of (N+M)×N matrices:

λ−1
(
Z − Z−[λ]

)
= HZ, (5.6)

where

Z =

(
X

Y

)
, H =

(
R Q

S L

)
. (5.7)

Hence,

λ−1(X −X−[λ]) = RX +QY, λ−1(Y − Y−[λ]) = SX + LY. (5.8)

8This also follows from our work in [10] and is the reason for the choice of the right-hand side of (5.2).

941



If X is invertible and

φ = Y X−1, (5.9)

then these equations imply

φ−[λ] = Y−[λ]X
−1
−[λ] =

[
φ− λ(S + Lφ)

][
IN − λ(R+Qφ)

]−1
, (5.10)

which is (5.3). Therefore, any solution Z of linear functional equation (5.6) with an invertible X determines

a solution (5.9) of functional matrix Riccati equation (5.3) and hence a solution of the matrix pKP hierarchy

we started with.

Remark 3. The first equation in (5.8) is equivalent to (4.18) and the heat hierarchy for X . Because

the second equation in (5.8) implies that Y must also solve the heat hierarchy, the φ determined by (5.9)

already solves the pKP hierarchy by the theorem in Sec. 4.2 without using the additional equation Yx =

SX+LY , which results from the second equation in (5.8), but this equation helps select interesting classes

of solutions (see below). In any case, the Riccati approach corresponds to a class of (generalized) Cole–Hopf

transformations in the sense of the theorem above. We also note that θ̃ = S + Lφ.

The general solution of (5.6) is

Z = eξ(H)Z0, ξ(H) =
∑

n≥1

Hntn, Z0 =

(
X0

Y0

)
, (5.11)

where X0 is invertible. As a consequence, Ztn
= HnZ. Setting

eξ(H) =:

(
Ξ11 Ξ12

Ξ21 Ξ22

)
, (5.12)

we have

φ = (Ξ21 + Ξ22φ0)(Ξ11 + Ξ12φ0)
−1, (5.13)

where φ0 = Y0X
−1
0 . This is a matrix fractional transformation with coefficients depending on t. For any

choice of the matrices S, L, R, and Q, this φ is a solution of the pKP hierarchy in the matrix algebra with

product (4.17). The practical problem is to compute eξ(H) explicitly.

Remark 4. With Z = eξ(H)Z0, TZ also satisfies (5.6) if T is constant and commutes with H . In

particular, T = kIM+N + H with any constant k induces such a transformation. It results in the matrix

fractional transformation (with constant coefficients) φ′ = (S+L′φ)(R′ +Qφ)−1, where L′ := L+ kIM and

R′ := R+ kIN .

Example 1. Let S = 0 and Q = RK −KL with a constant N×M matrix K. Then we have

Hn =

(
Rn RnK −KLn

0 Ln

)
, ξ(H) =

(
ξ(R) ξ(R)K −Kξ(L)

0 ξ(L)

)
, (5.14)

and hence

eξ(H) =

(
eξ(R) eξ(R)K −Keξ(L)

0 eξ(L)

)
. (5.15)
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Therefore, (5.13) becomes

φ = eξ(L)φ0(IN +Kφ0 − e−ξ(R)Keξ(L)φ0)
−1e−ξ(R). (5.16)

If Q has rank one, then we obtain the scalar pKP hierarchy solution

ϕ = tr(Qφ) = tr log
(
IN +Kφ0 − e−ξ(R)Keξ(L)φ0

)
x

= (log τ)x,

τ = det
(
IN +Kφ0 − e−ξ(R)Keξ(L)φ0

)
,

(5.17)

which includes well-known formulas for KP multisolitons [39] and resonances (see, e.g., [40], [41] and the

references therein).

Example 2. Let M = N , and let L = Sπ−, R = π+S, and Q = π+Sπ− with constant N×N matrices

S and π± such that π+ + π− = IN . It is easy to see that

Hn =

(
π+S

n π+S
nπ−

Sn Snπ−

)
. (5.18)

As a consequence, we obtain

eξ(H) =

(
π− + π+e

ξ(S) π+(eξ(S) − IN )π−

eξ(S) − IN π+ + eξ(S)π−

)
, (5.19)

and (5.13) is

φ = (−A+ eξ(S)B)(π−A+ π+e
ξ(S)B)−1, (5.20)

where A := IN − π+φ0 and B := IN + π−φ0. If rank(π+Sπ−) = 1, then

ϕ = tr(Qφ) = − tr(π+S) + (log τ)x, τ = det
(
π−A+ π+e

ξ(S)B
)
. (5.21)

For example, we let N = m+ n and choose

π− =

(
Im 0

0 0

)
, π+ =

(
0 0

0 In

)
. (5.22)

We set

φ0 =

(
(φ0)−− (φ0)−+

(φ0)+− (φ0)++

)
, S =

(
S−− S−+

S+− S++

)
. (5.23)

Because rankQ = 1 means rankS+− = 1 (also see [14]), we obtain

τ = det
((
eξ(S)

)
++

+
(
eξ(S)

)
+−

(φ0)−+

)
. (5.24)

In particular, if S is the shift operator Sei = ei+1, then this determines τ -functions, which can be expressed

in terms of Schur polynomials. This corresponds to a finite version of the Sato theory (see [14]). For

example, if m = n = 2 and (φ0)−+ =
(

a b
c d

)
, then we obtain

τ = 1 + cx+ a

(
y +

x2

2

)
+d

(
y −

x2

2

)
+ b

(
t−

x3

3

)
+ (ad− bc)

(
−xt+ y2 +

x4

12

)
.
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Appendix: Opposite Burgers hierarchy and beyond

We generalize the ansatz for E(λ) considered in Sec. 3 to

E(λ) = I − λ
∑

n≥0

λnφn. (A.1)

Then (2.8) becomes

χ̂n+1(φm) − χ̂m+1(φn) =

n∑

k=0

χ̂k(φm)φn−k −

m∑

k=0

χ̂k(φn)φm−k, (A.2)

where m,n = 0, 1, 2, . . . . This is an infinite system of coupled equations. As in Sec. 3, we seek a gauge

transformation such that condition (3.4) is satisfied, which is

λ−1
(
f − f−[λ]

)
=
∑

n≥0

λnφnf. (A.3)

Expanding the left-hand side in powers of λ, we obtain a generalized Cole–Hopf transformation,

φ0 = fxf
−1, φn = −χ̂n+1(f)f−1, n = 1, 2, . . . . (A.4)

By construction, this solves the zero-curvature equation and hence hierarchy (A.2). Gauge transforma-

tion (2.10) becomes

λ−1
(
B − B−[λ]

)
=

∞∑

n=0

λn(φ′nB − B−[λ]φn), (A.5)

and hence
φ′0 = Bφ0B

−1 + BxB
−1,

χ̂n+1(B) = −φ′nB +

n∑

k=0

χ̂k(B)φn−k, n = 1, 2, . . . .
(A.6)

Example 3. If we set φn = −χ̂n(φ), n = 0, 1, . . . , and hence

E(λ) = I + λφ−[λ], (A.7)

then the subsystem of (A.2) for m = 0 is

χ̂n+1(φ) + χ̂n(φx + φ2) − χ̂n(φ)φ = 0, n = 0, 1, . . . , (A.8)

which in functional form after a Miwa shift becomes representation (4.16) of the “opposite” Burgers hier-

archy. The remaining equations resulting from (A.2) are

χ̂mχ̂n+1(φ) − χ̂nχ̂m+1(φ) =

m∑

k=1

χ̂m−kχ̂n(φ)χ̂k(φ) −

n∑

k=1

χ̂n−kχ̂m(φ)χ̂k(φ),

where m,n = 1, 2, . . . . By the Hasse–Schmidt derivation property of the χ̂n, this is form (4.7) of the

pKP hierarchy. But we already know that the pKP hierarchy is satisfied as a consequence of the Burgers
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hierarchy. Equations (A.4) become

φ = −fxf
−1, χ̂n(φ) = χ̂n+1(f)f−1, n = 1, 2, . . . . (A.9)

This leads to the linear functional equation

f−1
[λ] = f−1 + λ(f−1)x, (A.10)

and hence χn(f−1) = 0 for n = 2, 3, . . . , which is equivalent to the version of a linear heat hierarchy

∂tn
(f−1) = (−1)n+1∂n

x (f−1), n = 2, 3, . . . . (A.11)

As a consequence, if f−1 solves linear hierarchy (A.11), then φ = −fxf
−1 solves Burgers hierarchy (4.16)

and also the pKP hierarchy.

Equations (A.6) become

φ′ = BφB−1
− BxB

−1, (I + λφ′)B[λ] = B(I + λφ). (A.12)

Using the first equation in the second to eliminate φ′ yields an equation linear in B−1,

(λ−1 + φ)
(
B
−1
[λ] − B

−1
)

= (B−1)x. (A.13)

Comparing this with Burgers hierarchy system (4.16) shows that B−1 = φ is a solution. More generally,

B−1 = α+ φβ with any constant α and β solves this equation.

Example 4. Setting φn = 0 for n > 0 and φ := φ0 reduces hierarchy (A.2) to the Burgers hierarchy

in Sec. 3, and the second equation in (A.4) requires that f solve the linear heat hierarchy. If we relax the

constraint to φn = 0 for n > 1, thus leaving φ0 and φ1 as dependent variables, then (A.2) results in

(
χ̂n+1(φ0) − χ̂n(φ0)φ0 − χ̂n−1(φ0)φ1

)
δm,0 +

+
(
χ̂n+1(φ1) − χ̂n(φ1)φ0 − χ̂n−1(φ1)φ1

)
δm,1 =

=
(
χ̂m+1(φ0) − χ̂m(φ0)φ0 − χ̂m−1(φ0)φ1

)
δn,0 +

+
(
χ̂m+1(φ1) − χ̂m(φ1)φ0 − χ̂m−1(φ1)φ1

)
δn,1. (A.14)

It suffices to consider m < n. For m = 0 and n = 1, this yields

φ0,y − φ0,xx − 2φ0,xφ0 = 2φ1,x + 2[φ1, φ0]. (A.15)

The equations of system (A.14) for m = 0 and n > 1 are

χ̂n+1(φ0) − χ̂n(φ0)φ0 − χ̂n−1(φ0)φ1 = 0, n = 2, 3, . . . , (A.16)

and for m = 1 and n > 1 are

χ̂n+1(φ1) − χ̂n(φ1)φ0 − χ̂n−1(φ1)φ1 = 0, n = 2, 3, . . . . (A.17)
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In the case under consideration, Eqs. (A.4) become

φ0 = fxf
−1, φ1 = −χ̂2(f)f−1 =

1

2
(fy − fxx)f−1, (A.18)

and

χ̂n(f) = 0, n = 3, 4, . . . , (A.19)

which is not equivalent to the heat hierarchy, because χ̂2(f) = 0 is missing.
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